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Abstract. In terms of the Block-Wannier basis, we present an electron-phonon model 
Hamiltonian with quasi-two-dimensional character of the electron dynamics for the cal- 
culation of the normal-state transport coefficients in the high-T, oxides. The physical picture 
of this model is that the in-plane resistivity originates from both the intra-plane and the inter- 
plane electron-phonon scattering, while the out-of-plane transport comes from the hopping 
conduction of electrons via phonon emission and absorption. The results obtained can be 
used to explain the nearly linear temperature dependences of the in-plane resistivity, the 
out-of-plane conductivity and thermopower observed in single-crystal YBa,Cu30,-,. 

1. Introduction 

In the current search to discover why the superconducting transition temperature T, in 
YBCO is so high, there has been interest in the normal-state transport properties 
exhibiting strong anisotropies and anomalous temperature dependences [ 1-16]. It is 
widely expected that a better understanding of the unusual transport behaviour in YBCO 
might offer valuable clues to the mechanism for high T, superconductivity. Earlier data 
[1-4] on ceramic YBCO material give linear temperature dependences for both the 
resistivityp and the Hallnumber densityn, = I/eRHwithRH > 0. Recent measurements 
[5-91 on single-crystal YBCO show that the in-plane transport properties resemble those 
found in ceramic samples, indicating that the dominant contribution to the conduction 
of a ceramic sample comes from crystallites with current flow in the Cu-0 planes. On 
the other hand, Tozer eta1 [5] reported that the resistivity anisotropy pc/pab is 30 at room 
temperature and increases to about 80 as the temperature is lowered. At the same 
time, the temperature dependences of the out-of-plane transport coefficients are quite 
different from those of the corresponding in-plane quantities. The thermopower S, along 
the c axis exhibits metallic behaviour [6,7], while the out-of-plane resistivity pc appears 
to be semiconducting [5,8] and it satisfies the empirical formula A / T  + BTproposed by 
Anderson and Zou [ 101. The Hall coefficient, measured with a magnetic field applied 
parallel to the Cu-0 planes, is negative or electron-like [ 5 ,  91, while the sign of S, is 
positive [6,7], indicating hole-like conduction according to the usual viewpoint. These 
anisotropic transport properties are very anomalous and difficult to be understood from 
a simple transport theory for common metals or semiconductors. 
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In this paper we are going to clarify several points of the unusual normal-state 

(1) The origin of such strong anisotropies in the transport properties of YBCO. 
(2) A unified explanation for the nearly linear temperature dependences of 

pab,  ac(=l/p,) and S, observed in single-crystal YBCO. 
(3) Whether the electrons or holes give the dominant contribution to the conduction 

along the c axis. 
Both structure analysis and band-structure calculation indicate the essentially two- 

dimensional nature of electron dynamics in YBCO. It is the highly two-dimensional 
character of the electron structure in YBCO that leads to the strong anisotropies in the 
transport properties. Although a number of interesting mechanisms for the high T, 
superconductivity have been suggested, neither one to date can be considered generally 
accepted. In spite of these (phonon or non-phonon) mechanisms we believe that the 
normal-state transport of the high T, oxides is essentially caused by the electron-phonon 
interaction. As we show below, owing to the nearly two-dimensional confinement of the 
carriers to Cu-0 planes, phonons play entirely different roles for the carrier transports 
parallel and perpendicular to the Cu-0 planes. The in-plane resistance originates from 
the electron-phonon scattering, while the out-of-plane conductance comes from the 
electron hopping via phonon emission and absorption. We propose an electron-phonon 
model Hamiltonian describing the above physical picture, from which the nearly linear 
temperature dependences of p a b ,  a, and S, can be deduced. At the same time, we point 
out that for the phonon-assisted hopping conduction between adjacent planes, the sign 
of the thermopower S, is opposite to that of carrier charge, in contrast with the usual 
case. Thus, from the positive thermopower found in single-crystal YBCO [6, 71, one 
would infer that the carriers which give the dominant contribution to the out-of-plane 
transport are electrons rather than holes. This conclusion is also consistent with the 
electron-like Hall coefficient observed in the measurement [5]  on single-crystal YBCO. 

transport properties in YBCO. 

2. Anisotropic electron-phonon model 

The system under consideration is composed of Cu-0 planes, each coupled weakly with 
its nearest-neighbour ones. The carriers (electrons or holes) are free to move within the 
two-dimensional Cu-0 planes, but have strong localised behaviour along the c axis. For 
such a system an appropriate basis set for the starting point of the transport calculation 
is the electron wavefunctions in a mixed Bloch-Wannier representation 

q ( r ,  2) = S-'I2 exp(ik r ) q ( z  - nd)ck,, 
k ,  n 

which are Bloch-like with respect to translations parallel to the Cu-0 planes with k and 
r as the two-dimensional wavevector and coordinate variables, respectively. q ( z  - nd) 
is the Wannier function which is well localised around the nth Cu-0 plane with n the 
plane index and d the spacing between adjacent Cu-0 planes. S is the area of the Cu- 
0 plane. In terms of the Bloch-Wannier basis set (1) and the second-quantisation 
representation, the Hamiltonian for an electron-phonon system in the presence of a 
constant electric field E = (Ell, E,) can be expressed as follows 

H =  he^ 4- He + Hph 4- He-ph (2) 

HeE = - e  N,(E,l - R n  + E,nd) 
n 

(3) 
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with qQA = bQi + bTQi. Here HeE is the interaction for the system of carriers with the 
external field. (Rn ,  nd) is the coordinate of the centre of mass of carriers for the nth Cu- 
0 plane and N ,  is the corresponding number of carriers. He is the Hamiltonian for the 
decoupled two-dimensional electron systems, in which cl,, ( C k n )  denote electron creation 
(annihilation) operators corresponding to the basis vector ( k ,  n) in (l), &kn = 
k2/2m* + with m* the effective carrier mass and eon the energy at the centre of the 
lowest miniband in the c direction. Hph represents the phonon Hamiltonian in which 
b& (bQl) are creation (annihilation) operators for phonon with wave vector Q in branch 
A ,  QQl is the phonon energy, and Q = (q,  q2)  with q and q2 respectively as the phonon 
momentum parallel and perpendicular to the Cu-0 planes. H e - p h ,  the last term in ( 2 ) ,  
contains the intra-plane and inter-plane electron-phonon interactions with M,,,(Q, A )  
and Mn,n + ,(e, A )  as the respective interaction matrix elements in the Bloch-Wannier 
basis set (1). Using the standard procedure [17] to calculate the electron-phonon inter- 
action matrix element, we relate M,,,(Q, A) to the usual matrix element M ( Q ,  A) in the 
three-dimensional Bloch representation as 

It is easily seen that IMnm(Q, A)I2 depends only upon the absolute value of the difference 
n - m, and the magnitude of the non-diagonal term (n # m) is much smaller than that 
of the diagonal term (n = m). If q2 in the integrand of (7) is taken to be zero, we shall 
obtain that M,,(Q, A )  = M ( Q ,  A)anm,  which reduces to the pure two-dimensional model. 
In the present model electrons from a given Cu-0 plane may hop via phonon emission 
and absorption to its neighbours. The assumption of weak coupling between planes 
allows the neglect of all non-diagonal matrix elements except those coupling nearest 
neighbour planes. The subscript ,m in M,,,(Q, A )  in equation (6) is therefore taken to be 
n a n d n  f 1. 

In the following, starting from the identical Hamiltonian given by (2)-(6), we shall 
derive the expressions for the in-plane resistivity P a b  and the out-of-plane conductivity 
a, of the system in the presence of a weak electric field. In order to apply the linear 
response theory to the calculations for P a b  and a,, we separate the Hamiltonian (2)  into 
two parts 

H = H o  + H '  (8) 

where H o  = He + Hph is the unperturbed part while H' = HeE + Elenph is the (small) 
perturbation. We imagine that at time t = - the electric field was absent and the 
electron-phonon interaction was turned off. The electron systems of various Cu-0 
planes were decoupled from phonons and from each other. The noninteracting electron 
gas, together with the phonon system, is considered to be in astate of thermal equilibrium 
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with a temperature T. Thus, the initial condition for the density matrix can be chosen to 
be 

p(t = - CO) = po = z - ~  exp[-(H, + Hph - p N ) / T ]  (9) 

where p is the chemical potential of the electron gas and Z is the partition function. 

3. In-plane resistivity 

We first calculate the in-plane resistivity &,h of the system in the presence of a weak field 
E, perpendicular to the c axis. An expression for p a b  can be obtained from the equation 
of motion for the centre-of-mass momentum P,: 

P x  = -i[Px, H ]  = NeEx - i C. M n n ( Q ,  A ) 4 x c k + , q , n c k n q Q A  
K.Q,A.n 

In the steady state, the centre of mass of carriers moves with a constant speed U, along 
the x direction and the ensemble average of P, is zero at all times: 

(P,(tN = 0, (11) 

which is called the force-balance equation. 
According to the theory of linear response of statistical systems to perturbations [18], 

for any operator A,  the ensemble average (A) in the presence of H’ is given to the lowest 
order by 

where (. 
the square bracket with a comma stands for the commutator of two operators, and 

= Tr( po) denotes averaging with the equilibrium statistical operator (9), 

A ( ~ )  = eiHtA e-iHt 

is the operator A in the Heisenberg picture; for example [ 191 

C k n ( t )  = Ckn exp{-it[(k + m*uJ2/2m* + 
and 

where 



Anisotropic transport in single-crystal YBa, Cu3 0, - 9213 

= f ( E k + q )  - f ( & k ) l  + n(aQ>l - [ l  - f ( E k + q ) l f ( E k ) n ( Q Q )  

= [ f ( & k + q )  - f ( E k ) l [ n ( Q Q )  - n ( E k + q  - (17) 

It is easy to see from (16) and (17) that Anm(k, q,  t )  is independent of the plane indices n 
and m since the electric field is assumed to be in the in-plane directions in this section. 
Here f ( ~ ~ )  is the usual Fermi function and n(QQ) the phonon distribution function. 
Substituting (16) and (17) into (14) and performing the integration overt, we obtain the 
force-balance equation as 

NeE, = F(ue ,  T ) ,  (18) 

F(u,, 77 = 2 E I l ~ n f l ( Q ,  412 + 2 / M , , f l + l ( Q ,  w q x  
n.Q.A 

where 

rIz(q, 0) = 2n E If(%) - f h + q ) l W )  - E k + q  + E d ,  (20) 
k 

is the imaginary part of the carrier density-density retarded correlation function. 
For a two-dimensional electron gas the summation over k in equation (20) is replaced 
by Jdk2/(2n)2. After performing the integration over the angle between k and q,  we 
have 

H * ( q ,  = (m/nq) d k  [df(Ek)ldklt(k 4, Ci-)), (21) loA 
where 

g k ,  4, O) = e(z-)(z-)1/2 - e(z+)(z,)l/*, z, = k2 - (q/2 (22) 
with O(x)  the unit step function. Since the current of the carriers is J = neu, with n 
as the number of carriers per unit volume, the in-plane resistivity is pab = E,/neu, = 
F(ue ,  T)/n2e2ve. In the zero-field limit: E + 0 and U ,  + 0, F(u,, T )  can be expanded to 
the lowest order in U, so that p a b  is given by 
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It seems to be the same as the expression for P a b  in Ref. [14], but I&f(Q, A)12 in (23) is a 
renormalisation matrix element: 

IM(Q, A)\* = [Co(qz) + 2Ci(qz)l IM(Q, A l l 2 ,  

with I = 0, 1. The normalisation matrix element of the electron-phonon interaction 
contains the phonon scattering processes not only within plane but also between adjacent 
planes. 

4. Out-of-plane conductivity and thermopower 

We now turn our attention to the out-of-plane conductivity perpendicular to the Cu-0 
plane. From the following calculation we shall see that this conductivity originates from 
phonon-assisted hopping processes in which electrons hop from plane to plane via 
phonon emission and absorption. We choose the E direction parallel to the c-axis. 
Following Ref. [17], the current operator J ,  for the tight binding model in the c-direction 
can be defined as 

1 d 
J ,  = e - ndCknCkn = ied H ,  2 nc+ c 

d t  (k,a [ k , n  kn kn ' 

where nd is the position of the nth Cu-0 plane along the c-axis. Using the model 
Hamiltonian (2), we find that only the Hamiltonian He+ contributes to the commutator 
in equation (25), yielding 

In terms of the linear response formula (12) and the equilibrium statistical operator (9), 
we obtain for the ensemble average of J,: 

( J c )  = d f  C I M n , n + i ( Q ,  A l l 2  { A n , n + l ( k ,  4 ,  t) - A n + ~ , n ( k ,  4 ,  t)>, (27) 
--m k,Q,A,n 

Since the electric field E applied in the c-axis leads to - q n +  = eEd, An,n+l(k, q, t )  
and An+l,n(k,  q, t )  are different from each other. Substituting (17) and (28)  into (27), 
and performing the integration overt, we obtain 

- n2(4, QQ - eEd) [n(Q,) - n(QQ - eEd)]}. 
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The out-of-plane conductivity is defined as a, = limE+o ( (Jc) /E) .  In this limit we 
obtain from (29), 

which is similar to equation (16) for a, of Ref. [14] in which the electron hopping via 
phonons is assumed to be the origin of the out-of-plane conductivity. The present 
expression (30) for a, is microscopically derived from the electron-phonon Hamiltonian 
(2)-(6), and the explicit expressions for Co(q,) and Cl(q,) have been given, while in Ref. 
[ 141 an anisotropic factor of the electron-phonon interaction is phenomenologically 
introduced. 

Then, we discuss the thermopower S, along the c-axis. It is straightforward to extend 
the calculation for the ensemble average of the current operator J ,  to the case in the 
presence of both a weak electric field and a small temperature gradient V T  in the c- 
direction. In the limits of both E-, 0 and VT-, 0, the result for (J,)  is 

( j c )  = (4em/n) I= cl(qz) I M ( Q ,  A>12n(QQ)[1 + n(QQ>l/q 
QJ 

X lom dk[-df(E,)/dk][(k, 4, Qe){edE/T - ( ~ k  - p)dVT/T2) .  (31) 

Comparing (31) with the definition for the thermopower E =S,VT with (J , )  = 0, we 
obtain 

S, = (n2 T/3e) [d In a,( e)/d E] E =  , (32) 

provided the degenerate condition p % Tis satisfied. Here the expression (32) for S, is 
similar in form to that for the diffusion thermopower in metals [20] in spite of their 
different transport mechanisms. In deriving equation (32) we have used the approxi- 
mation relation df(Ek)/dEk -- -a(&, - p)  for p % T, whose physical meaning is that the 
only electrons in a narrow energy region around the Fermi level make contributions to 
the hopping conduction. Under this approximation equation (30) becomes 

f y k ,  4, W )  = e(z-)(z-)-1/2 - e(z+)(z+)-1/2, 

and the expression for ( ( k ,  q ,  w )  has been given by equation (22). 
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5. Discussion and conclusion 

In the previous sections we have derived the explicit expressions for pab, U,, and S,. Let 
us now study their temperature dependences. First, we demonstrate that the three linear 
temperature laws hold within a temperature range of p 9 T > T* where T* = 2U,kF, ( U ,  

denoting the sound velocity), is a characteristic temperature introduced in Ref. [ 121. As 
discussed in the last section, when the condition p 9 Tis satisfied, the expression (30) 
for U, reduces to (33) in which the upper limit on the summation over q is put by the step 
functions O(z-) and O(z+) that appears in f(kF, q ,  Q,). Considering the dispersion 
relation QQ = u,q for the longitudinal acoustic phonon, one follows from equation (22) 
for O(z-) and O(z+) that k$ - (q/2 ? m * ~ , ) ~  3 0, yielding the upper limit: q D  = 
2(kF ? m*u,), or qD = 2kF due to kF S m*v,. Thus, the upper limit of the phonon energy 
u,q is T* = 2u,kF which may be well below the Debye temperature OD [12], and for 
T > T* we can make the following approximation: 

n ( Q Q ) [ l  + n(QQ)] = sech2(u,q/2T)/4 T2/ (u ,q )2 .  (37) 
Substituting (37) and (34) into (33), we obtain the linearity of the Tdependence of U,. 

It is easy to see that the expression (23) for Pab is quite similar in form to (30) for a,. It 
then follows that both p a b  and a, have the same linear temperature dependence. Under 
the approximation (37), the renormalisation matrix element I'd(Q, A)12 in (23) will not 
alter the linear temperature dependence of p a b  but make a few changes in the magnitude 
of pab. At the same time, it is easily seen from (35) that if the condition p 9 T > T* is 
satisfied, [d In u,(&)/d &IeEp is independent of temperature so that S,  given by (32) is also 
a linear function of temperature. 

For YBCO compounds, we estimate [14] p(T = 0) = 1080K and T* = 266K by 
taking typical values of parameters [ 121: the hole density n = 5 X 1021 ~ m - ~ ,  the effective 
mass m* = 5m,, and the sound velocity U, = 5 X lo5 cm/s. In view of these parameters 
the condition p S Tis not strictly satisfied at room temperature. Moreover, for YBCO 
T, = 93 K, is much lower than T* , and the approximation (37) can not be used generally 
below T*. Thus, to study the T dependences of p a b  and a,, a numerical evaluation for 
equations (23) and (30) is necessary. Using a set of parameters extracted from the 
experimental data we have calculated the in-plane resistivity and out-of-plane con- 
ductivity [14]. The obtained results show that both p a b  and U, have nearly linear T 
dependences from T, to room temperature with dpab/d T and du,/d Tonly slowly varying 
functions of temperature. This feature is consistent with that observed in many exper- 
imental measurements on single-crystal YBCO [5,8]. It is interesting to notice that the 
nearly linear temperature laws still hold within the range from T* down to T,. This is 
similar to the situation of a typical metal in which the resistivity due to phonon scattering 
exhibits well linear T behaviour from high temperatures down to OD/5 [20]. The origin 
of this effect may be that owing to the factor n(QQ) [l + n(QQ)] included in equations 
(23) and (30), the main contributions to the summations (or integrations) over q comes 
from small phonon momenta q for which the approximation (37) still holds below T* 
provided that u,q < 2T. 

Very recently it was pointed out [21] that the out-of-plane resistivity seems to depend 
very much on the way the single-crystal YBCO is grown. When A1203 is used for the 
crucible, the described 1/T behaviour of pc is observed, while when Z r 0 2  is used, a 
linear behaviour of pc is obtained [21]. The present phonon-assisted hopping mechanism 
is used to explain pc 1/T behaviour. The linear T dependence of pc observed on a few 
samples [21,22] implies that both p a b  and pc come from the electron-phonon scattering 
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mechanism. Which behaviour of pc represents the intrinsic property of YBCO is a 
pending question and remains to be studied still further. 

Finally, we wish to ascertain the sign of S, in equation (32). The variation of O(E) 
with energy will mainly depend on the change of the effective carrier mobility p( E )  of each 
electron as its energy changes. In usual metals and semiconductors, the thermopower S 
and carrier charge e have the same sign, S being negative for electrons (e < 0) and 
positive for holes (e > 0). This is because faster electrons are scattered less easily so that 
y ( ~ )  tends to increase with E and the derivative of In O(E) is positive. In the present 
hopping transport along the c-axis, however, the conclusion is quite the contrary. It is 
easy to see from (22) and (36) that z- > z+ for all q so that <(kF, q ,  QQ) is always positive, 
but 

As mentioned above, due to the factor n(QQ) [l + n(QQ)], the main contributions to the 
summations in equation (35) come from those small q. Moreover, in equation (35) the 
summating range, 0 s q s 2(kF - m*u,), for c ’ ( k ,  q ,  nQ) < 0 is much larger than that 
for <’(IC, q ,  QQ) > 0 because of k F S  m*u,. It then follows that the summation in the 
numerator of equation (35) is less than zero so that [d In o ~ ( E ) / ~ E ] ~ = ~  is negative. Thus, 
it is concluded that the sign of S, given by (32) is opposite from that of the carrier charge 
e. This result may arise from the hopping conduction mechanism for which the electron- 
phonon interaction does help the conduction of electrons, and faster electrons hop more 
difficultly from plane to plane. Recent measurements for S, on single-crystal YBCO 
have reported [6, 71 that the out-of-plane thermopower S, is positive, from which one 
could deduce that the carriers dominating the out-of-plane transport are the electrons 
rather than holes. This deduction is also consistent with the measured data for the Hall 
coefficient on single-crystal YBCO [5,9], which show that the Hall coefficient is negative 
or electron-type when the magnetic field is applied parallel to the Cu-0 planes. It has 
been reported [9] that the Hall constant on single-crystal YBCO, for the magnetic field 
parallel to c-axis, is positive (hole-like) and inversely proportional to temperature. This 
latter behaviour is very unusual. A possible two-band model [16] has been suggested to 
explain the unusual behaviour of the Hall constant, as well as of the in-plane ther- 
mopower in YBCO. 

In conclusion, we have shown that the electron-phonon model with quasi-two- 
dimensional character of the electron dynamics can be used to explain the strong 
anisotropies and unusual temperature dependences of the transport coefficients in 
YBCO, including the in-plane resistivity p a b ,  the out-of-plane conductivity O, and ther- 
mopower S,. 
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